# URI Online Judge Solution 1036 Bhaskara’s Formula – URI 1036 Solution in C, C++, Java, Python and C#

### URI Online Judge Solution 1036 Bhaskara’s Formula – URI 1036 Solution in C, C++, Java, Python and C#

URI Online Judge Solution 1036 Bhaskara’s Formula | Beginner

Problem Name: 1036 Bhaskara’s Formula solution
Problem Number : URI – 1036 Bhaskara’s Formula code
Online Judge : URI Online Judge Solution
Category: Beginner
Solution Language : C,C plus plus, java, python, c#(c sharp)

### URI Solution 1036 Bhaskara’s Formula Code in C / URI 1036 solution in C:

`#include<stdio.h>#include <math.h>int main(){ double a, b, c, t; scanf("%lf %lf %lf", &a, &b, &c); if(((b * b) - 4 * a * c) < 0 || a == 0){     printf("Impossivel calcularn"); } else{  t = sqrt((b * b) - 4 * a * c);  printf("R1 = %.5lfnR2 = %.5lfn", ((-b + t) / (2 * a)), ((-b - t) / (2 * a)));    } return 0;}`

### URI Solution 1036 Bhaskara’s Formula Code / URI 1036  solution in CPP:

`#include<stdio.h>#include <math.h>int main(){ double a, b, c, t; scanf("%lf %lf %lf", &a, &b, &c); if(((b * b) - 4 * a * c) < 0 || a == 0){     printf("Impossivel calcularn"); } else{  t = sqrt((b * b) - 4 * a * c);  printf("R1 = %.5lfnR2 = %.5lfn", ((-b + t) / (2 * a)), ((-b - t) / (2 * a)));    } return 0;}`

### URI Solution 1036 Bhaskara’s Formula Code / URI 1036  solution in Java:

`import java.util.Scanner;public class Main { public static void main(String[] args) {  double A, B, C, R1, R2;  Scanner input =new Scanner(System.in);  A = input.nextDouble();  B = input.nextDouble();  C = input.nextDouble();    if ((A == 0) || (((B*B) -(4*A*C)) < 0)) {   System.out.print("Impossivel calcularn");  }else {   R1 = ((-B + Math.sqrt(((B*B) -(4*A*C)))) / (2*A));   R2 = ((-B - Math.sqrt(((B*B) -(4*A*C)))) / (2*A));      System.out.printf("R1 = %.5fn", R1);   System.out.printf("R2 = %.5fn", R2);  }     }}`

### URI Solution 1036 Bhaskara’s Formula Code / URI 1036  solution in  C# (C Sharp):

Demonstration:

Just implement this in coding. Since having any problem just put a comment below. Thanks

Tags: URI Online Judge Solution, URI OJ Solution list, URI Problems Solution, URI solver, URI all problem solution list, URI Bhaskara’s Formula code in C, URI 1036  code in C++, URI  Bhaskara’s Formula solution in C, URI solution, URI 1036 Bhaskara’s Formula solution in C,URI 1036  solution in C++-CPP,URI 1036  solution in C# (C sharp),URI 1036 Bhaskara’s Formula solution in Java,URI 1036  solution in Python,

#### By Maniruzzaman Akash

Maniruzzaman Akash is a freelance web developer with most popular Laravel PHP frameork and Vue JS